Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 43, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468326

RESUMO

BACKGROUND: Metastasis is the leading cause of death in breast cancer patients. For metastasis to occur, tumor cells must invade locally, intravasate, and colonize distant tissues and organs, all steps that require tumor cell migration. The majority of studies on invasion and metastasis rely on human breast cancer cell lines. While it is known that these cells have different properties and abilities for growth and metastasis, the in vitro morphological, proliferative, migratory, and invasive behavior of these cell lines and their correlation to in vivo behavior is poorly understood. Thus, we sought to classify each cell line as poorly or highly metastatic by characterizing tumor growth and metastasis in a murine model of six commonly used human triple-negative breast cancer xenografts, as well as determine which in vitro assays commonly used to study cell motility best predict in vivo metastasis. METHODS: We evaluated the liver and lung metastasis of human TNBC cell lines MDA-MB-231, MDA-MB-468, BT549, Hs578T, BT20, and SUM159 in immunocompromised mice. We characterized each cell line's cell morphology, proliferation, and motility in 2D and 3D to determine the variation in these parameters between cell lines. RESULTS: We identified MDA-MB-231, MDA-MB-468, and BT549 cells as highly tumorigenic and metastatic, Hs578T as poorly tumorigenic and metastatic, BT20 as intermediate tumorigenic with poor metastasis to the lungs but highly metastatic to the livers, and SUM159 as intermediate tumorigenic but poorly metastatic to the lungs and livers. We showed that metrics that characterize cell morphology are the most predictive of tumor growth and metastatic potential to the lungs and liver. Further, we found that no single in vitro motility assay in 2D or 3D significantly correlated with metastasis in vivo. CONCLUSIONS: Our results provide an important resource for the TNBC research community, identifying the metastatic potential of 6 commonly used cell lines. Our findings also support the use of cell morphological analysis to investigate the metastatic potential and emphasize the need for multiple in vitro motility metrics using multiple cell lines to represent the heterogeneity of metastasis in vivo.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Xenoenxertos , Transplante Heterólogo , Movimento Celular
2.
Proc Natl Acad Sci U S A ; 121(2): e2308415120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38150477

RESUMO

Genomic DNA of the cyanophage S-2L virus is composed of 2-aminoadenine (Z), thymine (T), guanine (G), and cytosine (C), forming the genetic alphabet ZTGC, which violates Watson-Crick base pairing rules. The Z-base has an extra amino group on the two position that allows the formation of a third hydrogen bond with thymine in DNA strands. Here, we explored and expanded applications of this non-Watson-Crick base pairing in protein expression and gene editing. Both ZTGC-DNA (Z-DNA) and ZUGC-RNA (Z-RNA) produced in vitro show detectable compatibility and can be decoded in mammalian cells, including Homo sapiens cells. Z-crRNA can guide CRISPR-effectors SpCas9 and LbCas12a to cleave specific DNA through non-Watson-Crick base pairing and boost cleavage activities compared to A-crRNA. Z-crRNA can also allow for efficient gene and base editing in human cells. Together, our results help pave the way for potential strategies for optimizing DNA or RNA payloads for gene editing therapeutics and give insights to understanding the natural Z-DNA genome.


Assuntos
Pareamento de Bases , Sistemas CRISPR-Cas , DNA Forma Z , Edição de Genes , Humanos , DNA/genética , DNA/química , DNA Forma Z/genética , Edição de Genes/métodos , RNA/genética , RNA Guia de Sistemas CRISPR-Cas , Timina/química
3.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398306

RESUMO

Background: Metastasis is the leading cause of death in breast cancer patients. For metastasis to occur, tumor cells must invade locally, intravasate, and colonize distant tissues and organs, all steps that require tumor cell migration. The majority of studies on invasion and metastasis rely on human breast cancer cell lines. While it is known that these cells have different properties and abilities for growth and metastasis, the in vitro morphological, proliferative, migratory, and invasive behavior of these cell lines and their correlation to in vivo behavior is poorly understood. Thus, we sought to classify each cell line as poorly or highly metastatic by characterizing tumor growth and metastasis in a murine model of six commonly used human triple-negative breast cancer xenografts, as well as determine which in vitro assays commonly used to study cell motility best predict in vivo metastasis. Methods: We evaluated the liver and lung metastasis of human TNBC cell lines MDA-MB-231, MDA-MB-468, BT549, Hs578T, BT20, and SUM159 in immunocompromised mice. We characterized each cell line's cell morphology, proliferation, and motility in 2D and 3D to determine the variation in these parameters between cell lines. Results: We identified MDA-MB-231, MDA-MB-468, and BT549 cells as highly tumorigenic and metastatic, Hs578T as poorly tumorigenic and metastatic, BT20 as intermediate tumorigenic with poor metastasis to the lungs but highly metastatic to the livers, and SUM159 as intermediate tumorigenic but poorly metastatic to the lungs and livers. We showed that metrics that characterize cell morphology are the most predictive of tumor growth and metastatic potential to the lungs and liver. Further, we found that no single in vitro motility assay in 2D or 3D significantly correlated with metastasis in vivo. Conclusions: Our results provide an important resource for the TNBC research community, identifying the metastatic potential of 6 commonly used cell lines. Our findings also support the use of cell morphological analysis to investigate the metastatic potential and emphasize the need for multiple in vitro motility metrics using multiple cell lines to represent the heterogeneity of metastasis in vivo.

4.
Hum Gene Ther ; 33(23-24): 1293-1304, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36094106

RESUMO

Ex vivo gene therapy procedures targeting hematopoietic stem and progenitor cells (HSPCs) predominantly utilize lentivirus-based vectors for gene transfer. We provide the first pre-clinical evidence of the therapeutic utility of a foamy virus vector (FVV) for the genetic correction of human leukocyte adhesion deficiency type 1 (LAD-1), an inherited primary immunodeficiency resulting from mutation of the ß2 integrin common chain, CD18. CD34+ HSPCs isolated from a severely affected LAD-1 patient were transduced under a current good manufacturing practice-compatible protocol with FVV harboring a therapeutic CD18 transgene. LAD-1-associated cellular chemotactic defects were ameliorated in transgene-positive, myeloid-differentiated LAD-1 cells assayed in response to a strong neutrophil chemoattractant in vitro. Xenotransplantation of vector-transduced LAD-1 HSPCs in immunodeficient (NSG) mice resulted in long-term (∼5 months) human cell engraftment within murine bone marrow. Moreover, engrafted LAD-1 myeloid cells displayed in vivo levels of transgene marking previously reported to ameliorate the LAD-1 phenotype in a large animal model of the disease. Vector insertion site analysis revealed a favorable vector integration profile with no overt evidence of genotoxicity. These results coupled with the unique biological features of wild-type foamy virus support the development of FVVs for ex vivo gene therapy of LAD-1.


Assuntos
Síndrome da Aderência Leucocítica Deficitária , Spumavirus , Humanos , Camundongos , Animais , Spumavirus/genética , Vetores Genéticos/genética , Síndrome da Aderência Leucocítica Deficitária/genética , Síndrome da Aderência Leucocítica Deficitária/terapia , Células-Tronco Hematopoéticas , Antígenos CD18/genética , Antígenos CD34/genética
5.
Adv Drug Deliv Rev ; 181: 114087, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34942274

RESUMO

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has revolutionized the ability to edit the mammalian genome, providing a platform for the correction of pathogenic mutations and further investigation into gene function. CRISPR reagents can be delivered into the cell as DNA, RNA, or pre-formed ribonucleoproteins (RNPs). RNPs offer numerous advantages over other delivery approaches due to their ability to rapidly target genomic sites and quickly degrade thereafter. Here, we review the production steps and delivery methods for Cas9 RNPs. Additionally, we discuss how RNPs enhance genome and epigenome editing efficiencies, reduce off-target editing activity, and minimize cellular toxicity in clinically relevant mammalian cell types. We include details on a broad range of editing approaches, including novel base and prime editing techniques. Finally, we summarize key challenges for the use of RNPs, and propose future perspectives on the field.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma/genética , Ribonucleoproteínas/metabolismo , Animais , Sistemas de Liberação de Medicamentos/métodos , Epigenoma/genética
6.
Acc Chem Res ; 54(21): 4001-4011, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668716

RESUMO

Since the U.S. Food and Drug Administration (FDA) granted emergency use authorization for two mRNA vaccines against SARS-CoV-2, mRNA-based technology has attracted broad attention from the scientific community to investors. When delivered intracellularly, mRNA has the ability to produce various therapeutic proteins, enabling the treatment of a variety of illnesses, including but not limited to infectious diseases, cancers, and genetic diseases. Accordingly, mRNA holds significant therapeutic potential and provides a promising means to target historically hard-to-treat diseases. Current clinical efforts harnessing mRNA-based technology are focused on vaccination, cancer immunotherapy, protein replacement therapy, and genome editing. The clinical translation of mRNA-based technology has been made possible by leveraging nanoparticle delivery methods. However, the application of mRNA for therapeutic purposes is still challenged by the need for specific, efficient, and safe delivery systems.This Account highlights key advances in designing and developing combinatorial synthetic lipid nanoparticles (LNPs) with distinct chemical structures and properties for in vitro and in vivo intracellular mRNA delivery. LNPs represent the most advanced nonviral nanoparticle delivery systems that have been extensively investigated for nucleic acid delivery. The aforementioned COVID-19 mRNA vaccines and one LNP-based small interfering RNA (siRNA) drug (ONPATTRO) have received clinical approval from the FDA, highlighting the success of synthetic ionizable lipids for in vivo nucleic acid delivery. In this Account, we first summarize the research efforts from our group on the development of bioreducible and biodegradable LNPs by leveraging the combinatorial chemistry strategy, such as the Michael addition reaction, which allows us to easily generate a large set of lipidoids with diverse chemical structures. Next, we discuss the utilization of a library screening strategy to identify optimal LNPs for targeted mRNA delivery and showcase the applications of the optimized LNPs in cell engineering and genome editing. Finally, we outline key challenges to the clinical translation of mRNA-based therapies and propose an outlook for future directions of the chemical design and optimization of LNPs to improve the safety and specificity of mRNA drugs. We hope this Account provides insight into the rational design of LNPs for facilitating the development of mRNA therapeutics, a transformative technology that promises to revolutionize future medicine.


Assuntos
Vacinas contra COVID-19/farmacologia , Edição de Genes , Técnicas de Transferência de Genes , Lipídeos/química , Nanopartículas/química , RNA Mensageiro/farmacologia , Vacinas contra COVID-19/química , Terapia Genética , Humanos , RNA Mensageiro/química , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
7.
Mol Ther ; 29(4): 1611-1624, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33309880

RESUMO

Ex vivo gene correction of hematopoietic stem and progenitor cells (HSPCs) has emerged as a promising therapeutic approach for treatment of inherited human blood disorders. Use of engineered nucleases to target therapeutic transgenes to their endogenous genetic loci addresses many of the limitations associated with viral vector-based gene replacement strategies, such as insertional mutagenesis, variable gene dosage, and ectopic expression. Common methods of nuclease-mediated site-specific integration utilize the homology-directed repair (HDR) pathway. However, these approaches are inefficient in HSPCs, where non-homologous end joining (NHEJ) is the primary DNA repair mechanism. Recently, a novel NHEJ-based approach to CRISPR-Cas9-mediated transgene knockin, known as homology-independent targeted integration (HITI), has demonstrated improved site-specific integration frequencies in non-dividing cells. Here we utilize a HITI-based approach to achieve robust site-specific transgene integration in human mobilized peripheral blood CD34+ HSPCs. As proof of concept, a reporter gene was targeted to a clinically relevant genetic locus using a recombinant adeno-associated virus serotype 6 vector and single guide RNA/Cas9 ribonucleoprotein complexes. We demonstrate high levels of stable HITI-mediated genome editing (∼21%) in repopulating HSPCs after transplantation into immunodeficient mice. Our study demonstrates that HITI-mediated genome editing provides an effective alternative to HDR-based transgene integration in CD34+ HSPCs.


Assuntos
Sistemas CRISPR-Cas/genética , Terapia Genética , Doenças Hematológicas/genética , Transplante de Células-Tronco Hematopoéticas , Animais , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Dependovirus/genética , Edição de Genes , Vetores Genéticos/genética , Genoma Humano/genética , Doenças Hematológicas/patologia , Doenças Hematológicas/terapia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , RNA Guia de Cinetoplastídeos/genética , Reparo de DNA por Recombinação/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
8.
Stem Cell Res ; 41: 101600, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31710911

RESUMO

One of the most promising objectives of clinical hematology is to derive engraftable autologous hematopoietic stem cells (HSCs) from human induced pluripotent stem cells (iPSCs). Progress in translating iPSC technologies to the clinic relies on the availability of scalable differentiation methodologies. In this study, human iPSCs were differentiated for 21 days using STEMdiff™, a monolayer-based approach for hematopoietic differentiation of human iPSCs that requires no replating, co-culture or embryoid body formation. Both hematopoietic and non-hematopoietic cells were functionally characterized throughout differentiation. In the hematopoietic fraction, an early transient population of primitive CD235a+ erythroid progenitor cells first emerged, followed by hematopoietic progenitors with multilineage differentiation activity in vitro but no long-term engraftment potential in vivo. In later stages of differentiation, a nearly exclusive production of definitive erythroid progenitors was observed. In the non-hematopoietic fraction, we identified a prevalent population of mesenchymal stromal cells and limited arterial vascular endothelium (VE), suggesting that the cellular constitution of the monolayer may be inadequate to support the generation of HSCs with durable repopulating potential. Quantitative modulation of WNT/ß-catenin and activin/nodal/TGFß signaling pathways with CHIR/SB molecules during differentiation enhanced formation of arterial VE, definitive multilineage and erythroid progenitors, but was insufficient to orchestrate the generation of engrafting HSCs. Overall, STEMdiff™ provides a clinically-relevant and readily adaptable platform for the generation of erythroid and multilineage hematopoietic progenitors from human pluripotent stem cells.


Assuntos
Diferenciação Celular , Células Precursoras Eritroides/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Via de Sinalização Wnt , Técnicas de Cocultura , Células Precursoras Eritroides/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
9.
G3 (Bethesda) ; 9(11): 3773-3780, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31519746

RESUMO

DNA double-strand breaks (DSBs) are especially toxic DNA lesions that, if left unrepaired, can lead to wide-ranging genomic instability. Of the pathways available to repair DSBs, the most accurate is homologous recombination (HR), where a homologous sequence is used as a donor template to restore genetic information at the break site. While much of the biochemical aspects of HR repair have been characterized, how the repair machinery locates and discriminates between potential homologous donor templates throughout the genome remains elusive. We use Drosophila melanogaster to investigate whether there is a preference between intrachromosomal and interhomolog donor sequences in mitotically dividing cells. Our results demonstrate that, although interhomolog HR is possible and frequent if another donor template is not available, intrachromosomal donor templates are highly preferred. This is true even if the interhomolog donor template is less diverged than the intrachromosomal donor template. Thus, despite the stringent requirements for homology, the chromosomal location of the donor template plays a more significant role in donor template choice.


Assuntos
Cromossomos de Insetos , Quebras de DNA de Cadeia Dupla , Drosophila melanogaster/genética , Reparo de DNA por Recombinação , Animais , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...